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One-Dimensional Quantum Tunneling

Abstract

In this paper, we solve the one-dimensional time-independent Schrödinger equation for quan-
tum tunneling and explicitly derive the transmission and reflection coefficients for all three en-
ergy regimes: E < V0, E = V0, and E > V0. We also prove the continuity of these coefficients
across these regimes. Subsequently, we use Python to plot the coefficients as functions of the
dimensionless energy parameter η = E/V0 , and draw inferences from the plot. Finally, we qual-
itatively compare our quantum mechanical results with those predicted by classical mechanics.
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1. Introduction

This article explores the phenomenon of quantum tunneling through a finite potential barrier. We
derive solutions to the Schrödinger equation across all energy regimes and examine the continuity
of transmission and reflection coefficients. This work is intended as a comprehensive reference for
students or anyone curious about the mathematical framework underlying tunneling.

Consider the potential V (x) defined by:

V (x) =

{
V0 (> 0) 0 ≤ x ≤ a

0 otherwise

This potential forms a rectangular barrier, which can be sketched as follows:

x

E

0 a

V0

Potential Barrier

Region I Region II Region III

Here, space is divided into three regions, with Region II containing the potential barrier of height
V0 and width a. A quantum particle approaches the barrier from the left in Region I with energy E,
and we solve the one-dimensional, time-independent Schrödinger equation for the following mutually
exclusive and exhaustive cases:

1. 0 < E < V0

2. E = V0

3. E > V0

This is a classic quantum mechanics problem, often introduced in standard texts such as Griffiths
[1]. However, treatments typically omit an explicit analysis of the continuity of transmission and
reflection coefficients at the threshold energy E = V0. In this paper, we address that gap.
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2. Solving Schrödinger Equation

The time independent Schrödinger Equation is given as:

− ℏ2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x) (1)

A detailed discussion of the Schrödinger equation and its solutions for piecewise constant potentials
can also be found in Shankar [2].

2.1 Case I: 0 < E < V0

In Region I and Region III, (1) reduces to the following equation:

d2

dx2
ψ(x) = −k2ψ(x), where k =

√
2mE

ℏ
(2)

The solution to (2) is oscillatory and is given as:

Region I: ψ1(x) = Aeikx +Be−ikx (3)

Region III: ψ3(x) = Ceikx +De−ikx (4)

In (4), De−ikx represents a particle reflected in Region III and hence travelling along negative x
direction. Since there is no potential barrier in Region III, a particle having transmitted through
the potential barrier in Region II and travelling along positive x direction in Region III cannot be
reflected back. Hence D = 0. Therefore (4) reduces to the following equation:

Region III: ψ3(x) = Ceikx (5)

In Region II, (1) reduces to the following equation:

d2

dx2
ψ(x) = κ2ψ(x), where κ =

√
2m(V0 − E)

ℏ
(6)

The solution to (6) is exponential and is given as:

Region II: ψ2(x) = Feκx +Ge−κx (7)

Using continuity of ψ(x) at x = 0 and at x = a, we have:

ψ1(0) = ψ2(0) and ψ2(a) = ψ3(a) (8)

⇒ A+B = F +G and Feκa +Ge−κa = Ceika (9)

Using continuity of
d

dx
ψ(x) at x = 0 and at x = a, we have:

d

dx
ψ1(x)

∣∣∣∣
x=0

=
d

dx
ψ2(x)

∣∣∣∣
x=0

and
d

dx
ψ2(x)

∣∣∣∣
x=a

=
d

dx
ψ3(x)

∣∣∣∣
x=a

(10)

⇒ ikA− ikB = κF − κG and κFeκa − κGe−κa = ikCeika (11)
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Since we have five constants A,B,C, F,G and only four equations given by (9) and (11), the system
is underdetermined.

Now note that Aeikx represents a particle (wave) travelling along positive x direction in Region
I, Ceikx represents a particle (wave) travelling along positive x direction in Region III after hav-
ing transmitted through the potential barrier and Be−ikx represents a particle (wave) travelling
along negative x direction after getting reflected from the wall of the potential barrier at x = 0.
Accordingly we can write:

ψ1(x) = Aeikx +Be−ikx = ψ1,right + ψ1,left (12)

ψ3(x) = Ceikx = ψ3,right (13)

2.1.1 Finding Transmission and Reflection coefficients

Probability of finding a particle travelling right in Region I:

P1,right = ψ∗
1,rightψ1,right = (A∗e−ikx)(Aeikx) = A∗A (14)

Probability of finding a particle travelling left in Region I:

P1,left = ψ∗
1,leftψ1,left = (B∗eikx)(Be−ikx) = B∗B (15)

Probability of finding a particle travelling right in Region III:

P3,right = ψ∗
3,rightψ3,right = (C∗e−ikx)(Ceikx) = C∗C (16)

The transmission coefficient T and reflection coefficient R are defined as follows:

T =
P3,right

P1,right
and R =

P1,left

P1,right
(17)

Using (14), (15) and (16), (17) could be written as:

T =
C∗C

A∗A
= t∗t (say) and R =

B∗B

A∗A
= r∗r (say) (18)

Now for notational simplicity, let
B

A
= r,

F

A
= f ,

G

A
= g and

C

A
= t. We have already found the four

sets of equations given by (9) and (11) using boundary conditions and continuity of wavefunction
and its first derivative. On dividing each of these four equations by A and using the notations as
mentioned above, we get:

1 + r = f + g (19)

ik − ikr = κf − κg (20)

feκa + ge−κa = teika (21)

κfeκa − κge−κa = ikteika (22)
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Multiplying (21) by κ and adding it to (22), we get:

2κfeκa = ikteika + κteika (23)

Dividing (23) by 2κeκa and then simplifying, we get:

f =
te(ik−κ)a(ik + κ)

2κ
(24)

Multiplying (21) by κ and then subtracting it from (22), we get:

−2κge−κa = ikteika − κteika (25)

Dividing (25) by −2κe−κa and then simplifying, we get:

g =
te(ik+κ)a(ik − κ)

−2κ
(26)

Multiplying (19) by ik and then adding it to (20) we get:

2ik = (ik + κ)f + (ik − κ)g (27)

Using (24), (26) in (27) and then simplifying, we get:

2ik = [e−κa(ik + κ)2 − eκa(ik − κ)2]
teika

2κ
(28)

Simplifying (28) further, we get:

2ik = [(−k2 + κ2)(e−κa − eκa) + (2ikκ)(e−κa + eκa)]
teika

2κ
(29)

The hyperbolic sinh(x) and cosh(x) are given as:

sinh(x) =
ex − e−x

2
and cosh(x) =

ex + e−x

2
(30)

Using (30), we can write (29) as:

2ik = [−(−k2 + κ2)2 sinh(κa) + (2ikκ)2 cosh(κa)]
teika

2κ
(31)

Solving (31) for t, we get:

t =
4ikκe−ika

(k2 − κ2)2 sinh(κa) + (2ikκ)2 cosh(κa)
(32)

The complex conjugate of t can be written as:

t∗ =
−4ikκeika

(k2 − κ2)2 sinh(κa)− (2ikκ)2 cosh(κa)
(33)

Using (18), we have:

T = t∗t =
−4ikκeika

(k2 − κ2)2 sinh(κa)− (2ikκ)2 cosh(κa)
× 4ikκe−ika

(k2 − κ2)2 sinh(κa) + (2ikκ)2 cosh(κa)
(34)
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⇒ T =
16k2κ2

4(k2 − κ2)2 sinh2(κa) + 16k2κ2 cosh2(κa)
(35)

⇒ T =
1

(k2 − κ2)2

4k2κ2
sinh2(κa) + cosh2(κa)

(36)

Using the identity cosh2(x)− sinh2(x) = 1 in (36), it can be written as:

T =
1

1 +

[
(k2 − κ2)2

4k2κ2
+ 1

]
sinh2(κa)

(37)

Now we will first simplify the denominator of (37) as follows:

(k2 − κ2)2

4k2κ2
+ 1 =

k2

4κ2
+

κ2

4k2
+

1

2
(38)

Using the expression for k and κ from (2) and (6) respectively, we can write (38) as:

(k2 − κ2)2

4k2κ2
+ 1 =

V 2
0

4E(V0 − E)
(39)

Substituting (39) in (37) and letting η =
E

V0
, we can write:

T =

[
1 +

sinh2(κa)

4η(1− η)

]−1

, η ∈ (0, 1) (40)

The particle could either be transmitted through the barrier or be reflected from the barrier. Hence
we must have:

T +R = 1 ⇒ R = T − 1 (41)

Using expression for κ from (6) and the notation of η, we can rewrite κ as:

κ =

√
2mV0(1− η)

ℏ
(42)

2.2 Case II: E = V0

In this case the solution in Region I and Region III will remain same as given by (3) and (5)
respectively, i.e,

Region I: ψ1(x) = Aeikx +Be−ikx, k =

√
2mE

ℏ
(43)

Region III: ψ3(x) = Ceikx, k =

√
2mE

ℏ
(44)
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In Region II, (1) reduces to the following equation:

d2

dx2
ψ2(x) = 0 (45)

The solution to (45) is linear and is given by:

ψ2(x) = P +Qx (46)

Using continuity of ψ(x) at x = 0 and at x = a, we have:

ψ1(0) = ψ2(0) and ψ2(a) = ψ3(a) (47)

⇒ A+B = P and P +Qa = Ceika (48)

Using continuity of
d

dx
ψ(x) at x = 0 and at x = a, we have:

d

dx
ψ1(x)

∣∣∣∣
x=0

=
d

dx
ψ2(x)

∣∣∣∣
x=0

and
d

dx
ψ2(x)

∣∣∣∣
x=a

=
d

dx
ψ3(x)

∣∣∣∣
x=a

(49)

⇒ ikA− ikB = Q and Q = ikCeika (50)

Since we have five constants A,B,C, P,Q and only four equations given by (48) and (50), the system
is underdetermined.

2.2.1 Finding Transmission and Reflection coefficients

Note that (12),(13), (14), (15), (16), (17) and (18) still holds in this case.

Now for notational simplicity, let
B

A
= r,

P

A
= p,

Q

A
= q and

C

A
= t. We have already found the four

sets of equations given by (48) and (50) using boundary conditions and continuity of wavefunction
and its first derivative. On dividing each of these four equations by A and using the notations as
mentioned above, we get:

1 + r = p (51)

ik − ikr = q (52)

p+ qa = teika (53)

q = ikteika (54)

Multiplying (54) by a and subtracting it from (53), we get:

p = (1− ika)teika (55)

Multiplying (51) by ik and adding it to (52), we get:

2ik = pik + q (56)
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Using (54) and (55) in (56), we get:

2ik = (2− ika)ikteika (57)

Solving (57) for t, we get:

t =
2e−ika

2− ika
(58)

The complex conjugate of t can be written as:

t∗ =
2eika

2 + ika
(59)

Using (18), we have:

T = t∗t =
2eika

2 + ika
× 2e−ika

2− ika
=

4

4 + k2a2
(60)

⇒ T =

[
1 +

(
ka

2

)2
]−1

, k =

√
2mE

ℏ
=

√
2mV0
ℏ

(61)

Note that η =
E

V0
= 1 in this case.

The particle could either be transmitted through the barrier or be reflected from the barrier. Hence
we must have:

T +R = 1 ⇒ R = T − 1 (62)

2.3 Case III: E > V0

In this case the solution in Region I and Region III will remain same as given by (3) and (5)
respectively, i.e,

Region I: ψ1(x) = Aeikx +Be−ikx, k =

√
2mE

ℏ
(63)

Region III: ψ3(x) = Ceikx, k =

√
2mE

ℏ
(64)

In Region II, (1) reduces to the following equation:

d2

dx2
ψ2(x) = −α2ψ2(x), where α =

√
2m(E − V0)

ℏ
(65)

The solution to (65) is oscillatory and is given by:

ψ2(x) =Meiαx +Ne−iαx (66)
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Using continuity of ψ(x) at x = 0 and at x = a, we have:

ψ1(0) = ψ2(0) and ψ2(a) = ψ3(a) (67)

⇒ A+B =M +N and Meiαa +Ne−iαa = Ceika (68)

Using continuity of
d

dx
ψ(x) at x = 0 and at x = a, we have:

d

dx
ψ1(x)

∣∣∣∣
x=0

=
d

dx
ψ2(x)

∣∣∣∣
x=0

and
d

dx
ψ2(x)

∣∣∣∣
x=a

=
d

dx
ψ3(x)

∣∣∣∣
x=a

(69)

⇒ kA− kB = αM − αN and αMeiαa − αGe−iαa = kCeika (70)

Since we have five constants A,B,C,M,N and only four equations given by (68) and (70), the
system is underdetermined.

2.3.1 Finding Transmission and Reflection coefficients

Note that (12),(13), (14), (15), (16), (17) and (18) still holds in this case.

Now for notational simplicity, let
B

A
= r,

M

A
= m,

N

A
= n and

C

A
= t. We have already found

the four sets of equations given by (68) and (70) using boundary conditions and continuity of
wavefunction and its first derivative. On dividing each of these four equations by A and using the
notations as mentioned above, we get:

1 + r = m+ n (71)

k − kr = αm− αn (72)

meiαa + ne−iαa = teika (73)

αmeiαa − αne−iαa = kteika (74)

Multiplying (73) by iα and adding it to (74), we get:

2αmeiαa = kteika + αteika (75)

Dividing (75) by 2αeiαa and then simplifying, we get:

m =
te(ik−iα)a(k + α)

2α
(76)

Multiplying (73) by α and then subtracting it from (74), we get:

−2αne−iαa = kteika − αteika (77)

Dividing (77) by −2αe−iαa and then simplifying, we get:

n =
te(ik+iα)a(k − α)

−2α
(78)
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Multiplying (71) by k and then adding it to (72) we get:

2k = (k + α)m+ (k − α)n (79)

Using (76), (78) in (79) and then simplifying, we get:

2k = [e−iαa(k + α)2 − eiαa(k − α)2]
teika

2α
(80)

Simplifying (80) further, we get:

2k = [(k2 + α2)(e−iαa − eiαa) + (2kα)(e−iαa + eiαa)]
teika

2α
(81)

The hyperbolic sinh(x) and cosh(x) are given as:

sinh(x) =
ex − e−x

2
and cosh(x) =

ex + e−x

2
(82)

Using (82), we can write (81) as:

2k = [−(−k2 + α2)2 sinh(iαa) + (2kα)2 cosh(iαa)]
teika

2α
(83)

But sinh(ix) = i sin(x) and cosh(ix) = cos(x). Therefore we have from (83):

2k = [−i(−k2 + α2)2 sin(αa) + (2kα)2 cos(αa)]
teika

2α
(84)

Solving (84) for t, we get:

t =
4kαe−ika

−i(k2 + α2)2 sin(αa) + (2kα)2 cos(αa)
(85)

The complex conjugate of t can be written as:

t∗ =
4kαeika

i(k2 + α2)2 sin(κa) + (2kα)2 cos(κa)
(86)

Using (18), we have:

T = t∗t =
4kαeika

i(k2 + α2)2 sin(κa) + (2kα)2 cos(κa)
× 4kαe−ika

−i(k2 + α2)2 sin(αa) + (2kα)2 cos(αa)
(87)

⇒ T =
16k2α2

4(k2 + α2)2 sin2(αa) + 16k2α2 cos2(αa)
(88)

⇒ T =
1

(k2 + α2)2

4k2α2
sin2(αa) + cos2(αa)

(89)

10
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Using the identity cos2(x) + sin2(x) = 1 in (89), it can be written as:

T =
1

1 +

[
(k2 + α2)2

4k2α2
− 1

]
sin2(αa)

(90)

Now we will first simplify the denominator of (90) as follows:

(k2 + α2)2

4k2α2
− 1 =

k2

4α2
+

α2

4k2
− 1

2
(91)

Using the expression for k and α from (64) and (65) respectively, we can write (91) as:

(k2 + α2)2

4k2α2
− 1 =

V 2
0

4E(E − V0)
(92)

Substituting (92) in (90) and letting η =
E

V0
, we can write:

T =

[
1 +

sin2(αa)

4η(η − 1)

]−1

, η ∈ (1,∞) (93)

The particle could either be transmitted through the barrier or be reflected from the barrier. Hence
we must have:

T +R = 1 ⇒ R = T − 1 (94)

Using expression for α from (65) and the notation of η, we can rewrite α as:

α =

√
2mV0(η − 1)

ℏ
(95)
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3. Continuity of Transmission coefficient function T(η) and
Reflection coefficient function R(η)

Since we have already found the Transmission and Reflection coefficients, we will now inspect their
continuity.

Let us define T : (0,∞) → [0, 1] by

T (η) =



[
1 +

sinh2(κa)

4η(1− η)

]−1

, κ =

√
2mV0(1− η)

ℏ
∀ η ∈ (0, 1)

[
1 +

(
ka

2

)2
]−1

, k =

√
2mV0
ℏ

if η = 1

[
1 +

sin2(αa)

4η(η − 1)

]−1

, α =

√
2mV0(η − 1)

ℏ
∀ η ∈ (1,∞)

We note that 1, sinh2(κa) and 4η(1 − η) are positive smooth functions when η ∈ (0, 1). Also note
that 1 and 4η(η − 1) are positive smooth functions and sin2(αa) is non-negative smooth function
when η ∈ (1,∞). Hence T (η) is continuous when η ∈ (0, 1) ∪ (1,∞). Now we will inspect the
continuity of T (η) at η = 1.

Note that
d

dη
κ =

−mV0
ℏ
√
2mV0(1− η)

and 2 sinh(κa) cosh(κa) = sinh(2κa). The limit of T (η) as

η → 1− is given as:

lim
η→1−

T (η) =
1

1 + lim
η→1−

sinh2(κa)

4η(1− η)

(96)

Since the limit in (96) gives an indeterminate form (00), we have using L’Hôpital’s Rule:

lim
η→1−

sinh2(κa)

4η(1− η)
= lim

η→1−

2a sinh(κa) cosh(κa)
d

dη
κ

4− 8η
=
mV0a

4ℏ
lim

η→1−

sinh(2κa)√
2mV0(1− η)

(97)

The limit in (97) again gives an indeterminate form (00). Using L’Hôpital’s Rule again gives:

lim
η→1−

sinh2(κa)

4η(1− η)
= −mV0a

4ℏ
· 4a

2mV0
lim

η→1−
cosh(2κa)

√
2mV0(1− η)

d

dη
κ (98)

⇒ lim
η→1−

sinh2(κa)

4η(1− η)
=
mV0a

2

2ℏ2
lim

η→1−
cosh(2κa) (99)

Since κ→ 0 as η → 1− ⇒ cosh(2κa) → 1 as η → 1−. Therefore we have from (99):

lim
η→1−

sinh2(κa)

4η(1− η)
=
mV0a

2

2ℏ2
(100)

12
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Using (100) in (96), we have:

lim
η→1−

T (η) =

[
1 +

mV0a
2

2ℏ2

]−1

(101)

Now note that
d

dη
α =

mV0

ℏ
√
2mV0(η − 1)

and 2 sin(αa) cosh(αa) = sin(2αa). The limit of T (η) as

η → 1+ is given as:

lim
η→1+

T (η) =
1

1 + lim
η→1+

sin2(αa)

4η(η − 1)

(102)

Since the limit in (102) gives an indeterminate form (00), we have using L’Hôpital’s Rule:

lim
η→1+

sin2(αa)

4η(η − 1)
= lim

η→1+

2a sin(αa) cos(αa)
d

dη
α

8η − 4
=
mV0a

4ℏ
lim

η→1+

sin(2αa)√
2mV0(η − 1)

(103)

The limit in (103) again gives an indeterminate form (00). Using L’Hôpital’s Rule again gives:

lim
η→1+

sin2(αa)

4η(η − 1)
=
mV0a

4ℏ
· 4a

2mV0
lim

η→1+
cos(2αa)

√
2mV0(η − 1)

d

dη
α (104)

⇒ lim
η→1+

sin2(αa)

4η(η − 1)
=
mV0a

2

2ℏ2
lim

η→1+
cos(2αa) (105)

Since α→ 0 as η → 1+ ⇒ cos(2αa) → 1 as η → 1+. Therefore we have from (105):

lim
η→1+

sin2(αa)

4η(η − 1)
=
mV0a

2

2ℏ2
(106)

Using (106) in (102), we have:

lim
η→1+

T (η) =

[
1 +

mV0a
2

2ℏ2

]−1

(107)

At η = 1, we have:

T (1) =

[
1 +

(
ka

2

)2
]−1

=

[
1 +

mV0a
2

2ℏ2

]−1

(108)

From (101), (107) and (108), we have:

lim
η→1−

T (η) = lim
η→1+

T (η) = T (1) =

[
1 +

mV0a
2

2ℏ2

]−1

(109)

Hence T (η) is also continuous at η = 1. Therefore T (η) is continuous on (0,∞).

Now define R : (0,∞) → [0, 1] by

R(η) = 1− T (η) ∀ η ∈ (0,∞) (110)

Since both 1 and T (η) are continuous on (0,∞) ⇒ R(η) is continuous on (0,∞).
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4. Plotting Transmission and Reflection coefficients vs η using Python

Let us consider an electron moving along positive x direction in Region I. It will encounter a potential
barrier of height 1 eV and of width 1 nm. Let us plot the values of Transmission and Reflection
coefficients vs η. We will use the expressions for T , R, κ, k and α as determined in this paper.

4.1 Python Code

import numpy as np
import matplotlib.pyplot as plt

# Constants
m = 9.11 * 10**( -31) # mass of electron (kg)
hbar = 1.055 * 10**( -34) # reduced Planck 's constant (Js)
V0 = 1 * 1.6 * 10**( -19) # barrier height in Joules (1 eV)
a = 10**( -9) # barrier width (m)

# Tunneling region : eta <= 1
eta_tunnel = np.linspace (0,1,500) [1:-1] # exclude 0 and 1
kappa = np.sqrt(2 * m * V0 * (1 - eta_tunnel ) )/hbar
sinh_term = np.sinh(kappa * a)**2
T_kappa = 1/(1+( sinh_term /(4 * eta_tunnel * (1 - eta_tunnel))))
R_kappa = 1 - T_kappa

# E=V0 : eta=1
eta=np.array ([1])
k=np.sqrt(2 * m * V0)/hbar
T=np.array ([1/(1+((k * a)/2) **2)])
R=1-T

# Over -barrier region : eta > 1
eta_above = np.linspace (1 ,7 ,3000) [1:] # exclude 1
alpha = np.sqrt(2 * m * V0 * ( eta_above -1))/hbar
sin_term = np.sin(alpha * a)**2
T_alpha = 1/(1 +( sin_term /(4 * eta_above * ( eta_above - 1))))
R_alpha = 1 - T_alpha

# Plotting
plt.plot(eta_tunnel , T_kappa , color ='red', label =r'Transmission

Coefficient $T$')
plt.plot(eta_tunnel , R_kappa , color ='blue', label =r'Reflection

Coefficient $R$')
plt.plot(eta ,T,'r,')
plt.plot(eta ,R,'b,')
plt.plot(eta_above , T_alpha , color ='red')
plt.plot(eta_above , R_alpha , color ='blue')
plt.title('Quantum Tunneling ')
plt.xlabel(r'$\eta = \dfrac{E}{ V_0}$')
plt.ylabel ('Coefficient Value ')
plt.legend ()
plt.grid()
plt.ylim ( -0.05 ,1.05)
plt.xlim (0,7)
plt.show()
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4.2 Plot

Figure 1: Plot of transmission coefficient T (η) and reflection coefficient R(η) as functions of the
dimensionless energy parameter η = E/V0. The plot illustrates continuity at η = 1 and the
transition from tunneling to oscillatory behavior.

4.3 Inference from the Plot

The graph depicting the transmission coefficient T (η) and reflection coefficient R(η) as functions of
the dimensionless parameter η = E

V0
reveals the nuanced behavior of quantum particles interacting

with a potential barrier.

For η < 1, we observe that T (η) remains strictly non-zero as η → 1−, indicating that particles with
energy less than the barrier height still possess a finite probability of tunneling through the barrier.
This behavior arises from the continuity of the wavefunction and its derivative across the potential
barrier. As η → 0, T (η) → 0, and R(η) → 1, which agrees with intuitive expectations of nearly
total reflection at very low energies.

At η = 1, a critical threshold, the function T (η) is shown to be continuous, as confirmed by analytical
limits using L’Hôpital’s Rule. This reflects the smooth transition between classically forbidden and
allowed energy regimes in quantum mechanics.

For η > 1, the particle energy exceeds the potential of the barrier. In this regime, T (η) exhibits
oscillatory behavior due to constructive and destructive interference between forward and backward
traveling waves. As η → ∞, T (η) → 1 and R(η) → 0, aligning with the classical limit of full
transmission at high energies.
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5. Comparison with Classical Mechanics

For E < V0 (η < 1), classical mechanics predicts total reflection, as the particle cannot overcome
the potential barrier, implying T = 0 and R = 1. However, in quantum mechanics, the wave-like
nature of particles allows for non-zero penetration into the classically forbidden region, governed
by the exponential solution to the Schrödinger equation in the barrier region (Region II). The
continuity of the wavefunction and its derivative enforces boundary conditions that yield a non-zero
transmission probability, a distinctly quantum phenomenon known as tunneling.

At E = V0 (η = 1), classical mechanics predicts total reflection, since the particle has zero kinetic
energy at the barrier and cannot proceed. In quantum mechanics, however, the continuity of the
wavefunction and its derivative still allows for a non-zero transmission probability. Although the
wavefunction is linear in the barrier region (Region II) at this energy, the boundary conditions
ensure that partial transmission occurs even at this critical point.

For E > V0 (η > 1), classical mechanics predicts total transmission. Quantum mechanics, in
contrast, introduces partial reflection due to abrupt changes in the potential in a region. The
wavefunction in the barrier region (Region II) undergoes interference due to its complex exponential
form, resulting in oscillatory behavior of both T and R. These oscillations encode the resonant and
anti-resonant conditions determined by the phase relation between waves, a concept entirely absent
in classical particle dynamics.

Thus, the quantum description not only accommodates classically forbidden phenomena (tunneling),
but also provides richer structure in classically allowed regimes, revealing the fundamentally wave-
like nature of microscopic systems.
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