One-Dimensional Quantum Tunneling #### Abstract In this paper, we solve the one-dimensional time-independent Schrödinger equation for quantum tunneling and explicitly derive the transmission and reflection coefficients for all three energy regimes: $E < V_0$, $E = V_0$, and $E > V_0$. We also prove the continuity of these coefficients across these regimes. Subsequently, we use Python to plot the coefficients as functions of the dimensionless energy parameter $\eta = E/V_0$, and draw inferences from the plot. Finally, we qualitatively compare our quantum mechanical results with those predicted by classical mechanics. ### Contents | 1. | Introduction | 2 | |----|---------------------------------------------------------------------------------------------------------------------------|----| | 2. | Solving Schrödinger Equation | 3 | | | 2.1 Case I: $0 < E < V_0$ | 3 | | | 2.1.1 Finding Transmission and Reflection coefficients | 4 | | | 2.2 Case II: $E = V_0$ | | | | 2.2.1 Finding Transmission and Reflection coefficients | 7 | | | 2.3 Case III: $E > V_0$ | 8 | | | 2.3.1 Finding Transmission and Reflection coefficients | | | 3. | Continuity of Transmission coefficient function $\mathbf{T}(\eta)$ and Reflection coefficient function $\mathbf{R}(\eta)$ | 12 | | 4. | Plotting Transmission and Reflection coefficients vs η using Python | 14 | | | 4.1 Python Code | | | | 4.2 Plot | | | | 4.3 Inference from the Plot | | | 5. | Comparison with Classical Mechanics | 16 | | R | eferences | 16 | #### 1. Introduction This article explores the phenomenon of quantum tunneling through a finite potential barrier. We derive solutions to the Schrödinger equation across all energy regimes and examine the continuity of transmission and reflection coefficients. This work is intended as a comprehensive reference for students or anyone curious about the mathematical framework underlying tunneling. Consider the potential V(x) defined by: $$V(x) = \begin{cases} V_0 & (>0) & 0 \le x \le a \\ 0 & \text{otherwise} \end{cases}$$ This potential forms a rectangular barrier, which can be sketched as follows: Here, space is divided into three regions, with Region II containing the potential barrier of height V_0 and width a. A quantum particle approaches the barrier from the left in Region I with energy E, and we solve the one-dimensional, time-independent Schrödinger equation for the following mutually exclusive and exhaustive cases: - 1. $0 < E < V_0$ - 2. $E = V_0$ - 3. $E > V_0$ This is a classic quantum mechanics problem, often introduced in standard texts such as Griffiths [1]. However, treatments typically omit an explicit analysis of the continuity of transmission and reflection coefficients at the threshold energy $E = V_0$. In this paper, we address that gap. # 2. Solving Schrödinger Equation The time independent Schrödinger Equation is given as: $$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x) + V(x)\psi(x) = E\psi(x)$$ (1) A detailed discussion of the Schrödinger equation and its solutions for piecewise constant potentials can also be found in Shankar [2]. #### 2.1 Case I: $0 < E < V_0$ In Region I and Region III, (1) reduces to the following equation: $$\frac{d^2}{dx^2}\psi(x) = -k^2\psi(x), \quad \text{where } k = \frac{\sqrt{2mE}}{\hbar}$$ (2) The solution to (2) is oscillatory and is given as: Region I: $$\psi_1(x) = Ae^{ikx} + Be^{-ikx}$$ (3) Region III: $$\psi_3(x) = Ce^{ikx} + De^{-ikx}$$ (4) In (4), De^{-ikx} represents a particle reflected in Region III and hence travelling along negative x direction. Since there is no potential barrier in Region III, a particle having transmitted through the potential barrier in Region II and travelling along positive x direction in Region III cannot be reflected back. Hence D=0. Therefore (4) reduces to the following equation: Region III: $$\psi_3(x) = Ce^{ikx}$$ (5) In Region II, (1) reduces to the following equation: $$\frac{d^2}{dx^2}\psi(x) = \kappa^2\psi(x), \quad \text{where } \kappa = \frac{\sqrt{2m(V_0 - E)}}{\hbar}$$ (6) The solution to (6) is exponential and is given as: Region II: $$\psi_2(x) = Fe^{\kappa x} + Ge^{-\kappa x}$$ (7) Using continuity of $\psi(x)$ at x=0 and at x=a, we have: $$\psi_1(0) = \psi_2(0)$$ and $\psi_2(a) = \psi_3(a)$ (8) $\Rightarrow A + B = F + G$ and $Fe^{\kappa a} + Ge^{-\kappa a} = Ce^{ika}$ (9) $$\Rightarrow A + B = F + G \quad \text{and} \quad Fe^{\kappa a} + Ge^{-\kappa a} = Ce^{ika} \tag{9}$$ Using continuity of $\frac{d}{dx}\psi(x)$ at x=0 and at x=a, we have: $$\frac{d}{dx}\psi_1(x)\Big|_{x=0} = \frac{d}{dx}\psi_2(x)\Big|_{x=0} \quad \text{and} \quad \frac{d}{dx}\psi_2(x)\Big|_{x=a} = \frac{d}{dx}\psi_3(x)\Big|_{x=a}$$ $$\Rightarrow ikA - ikB = \kappa F - \kappa G \quad \text{and} \quad \kappa F e^{\kappa a} - \kappa G e^{-\kappa a} = ikC e^{ika}$$ (10) $$\Rightarrow ikA - ikB = \kappa F - \kappa G \quad \text{and} \quad \kappa F e^{\kappa a} - \kappa G e^{-\kappa a} = ikC e^{ika}$$ (11) Since we have five constants A, B, C, F, G and only four equations given by (9) and (11), the system is underdetermined. Now note that Ae^{ikx} represents a particle (wave) travelling along positive x direction in Region I, Ce^{ikx} represents a particle (wave) travelling along positive x direction in Region III after having transmitted through the potential barrier and Be^{-ikx} represents a particle (wave) travelling along negative x direction after getting reflected from the wall of the potential barrier at x=0. Accordingly we can write: $$\psi_1(x) = Ae^{ikx} + Be^{-ikx} = \psi_{1,\text{right}} + \psi_{1,\text{left}}$$ (12) $$\psi_3(x) = Ce^{ikx} = \psi_{3,\text{right}} \tag{13}$$ #### 2.1.1 Finding Transmission and Reflection coefficients Probability of finding a particle travelling right in Region I: $$P_{1,\text{right}} = \psi_{1,\text{right}}^* \psi_{1,\text{right}} = (A^* e^{-ikx})(Ae^{ikx}) = A^* A$$ (14) Probability of finding a particle travelling left in Region I: $$P_{1,\text{left}} = \psi_{1,\text{left}}^* \psi_{1,\text{left}} = (B^* e^{ikx})(Be^{-ikx}) = B^* B$$ (15) Probability of finding a particle travelling right in Region III: $$P_{3,\text{right}} = \psi_{3,\text{right}}^* \psi_{3,\text{right}} = (C^* e^{-ikx})(Ce^{ikx}) = C^*C$$ (16) The transmission coefficient T and reflection coefficient R are defined as follows: $$T = \frac{P_{3,\text{right}}}{P_{1,\text{right}}} \quad and \quad R = \frac{P_{1,\text{left}}}{P_{1,\text{right}}}$$ (17) Using (14), (15) and (16), (17) could be written as: $$T = \frac{C^*C}{A^*A} = t^*t$$ (say) and $R = \frac{B^*B}{A^*A} = r^*r$ (say) (18) Now for notational simplicity, let $\frac{B}{A}=r, \frac{F}{A}=f, \frac{G}{A}=g$ and $\frac{C}{A}=t$. We have already found the four sets of equations given by (9) and (11) using boundary conditions and continuity of wavefunction and its first derivative. On dividing each of these four equations by A and using the notations as mentioned above, we get: $$1 + r = f + g \tag{19}$$ $$ik - ikr = \kappa f - \kappa g \tag{20}$$ $$fe^{\kappa a} + ge^{-\kappa a} = te^{ika} \tag{21}$$ $$\kappa f e^{\kappa a} - \kappa g e^{-\kappa a} = ikt e^{ika} \tag{22}$$ Multiplying (21) by κ and adding it to (22), we get: $$2\kappa f e^{\kappa a} = ikte^{ika} + \kappa te^{ika} \tag{23}$$ Dividing (23) by $2\kappa e^{\kappa a}$ and then simplifying, we get: $$f = \frac{te^{(ik-\kappa)a}(ik+\kappa)}{2\kappa} \tag{24}$$ Multiplying (21) by κ and then subtracting it from (22), we get: $$-2\kappa g e^{-\kappa a} = ikte^{ika} - \kappa t e^{ika} \tag{25}$$ Dividing (25) by $-2\kappa e^{-\kappa a}$ and then simplifying, we get: $$g = \frac{te^{(ik+\kappa)a}(ik-\kappa)}{-2\kappa} \tag{26}$$ Multiplying (19) by ik and then adding it to (20) we get: $$2ik = (ik + \kappa)f + (ik - \kappa)g \tag{27}$$ Using (24), (26) in (27) and then simplifying, we get: $$2ik = \left[e^{-\kappa a}(ik + \kappa)^2 - e^{\kappa a}(ik - \kappa)^2\right] \frac{te^{ika}}{2\kappa}$$ (28) Simplifying (28) further, we get: $$2ik = [(-k^2 + \kappa^2)(e^{-\kappa a} - e^{\kappa a}) + (2ik\kappa)(e^{-\kappa a} + e^{\kappa a})] \frac{te^{ika}}{2\kappa}$$ (29) The hyperbolic sinh(x) and cosh(x) are given as: $$\sinh(x) = \frac{e^x - e^{-x}}{2}$$ and $\cosh(x) = \frac{e^x + e^{-x}}{2}$ (30) Using (30), we can write (29) as: $$2ik = \left[-(-k^2 + \kappa^2) 2\sinh(\kappa a) + (2ik\kappa) 2\cosh(\kappa a) \right] \frac{te^{ika}}{2\kappa}$$ (31) Solving (31) for t, we get: $$t = \frac{4ik\kappa e^{-ika}}{(k^2 - \kappa^2)2\sinh(\kappa a) + (2ik\kappa)2\cosh(\kappa a)}$$ (32) The complex conjugate of t can be written as: $$t^* = \frac{-4ik\kappa e^{ika}}{(k^2 - \kappa^2)2\sinh(\kappa a) - (2ik\kappa)2\cosh(\kappa a)}$$ (33) Using (18), we have: $$T = t^*t = \frac{-4ik\kappa e^{ika}}{(k^2 - \kappa^2)2\sinh(\kappa a) - (2ik\kappa)2\cosh(\kappa a)} \times \frac{4ik\kappa e^{-ika}}{(k^2 - \kappa^2)2\sinh(\kappa a) + (2ik\kappa)2\cosh(\kappa a)}$$ (34) $$\Rightarrow T = \frac{16k^2\kappa^2}{4(k^2 - \kappa^2)^2 \sinh^2(\kappa a) + 16k^2\kappa^2 \cosh^2(\kappa a)}$$ (35) $$\Rightarrow T = \frac{1}{\frac{(k^2 - \kappa^2)^2}{4k^2\kappa^2} \sinh^2(\kappa a) + \cosh^2(\kappa a)}$$ (36) Using the identity $\cosh^2(x) - \sinh^2(x) = 1$ in (36), it can be written as: $$T = \frac{1}{1 + \left[\frac{(k^2 - \kappa^2)^2}{4k^2\kappa^2} + 1\right] \sinh^2(\kappa a)}$$ (37) Now we will first simplify the denominator of (37) as follows: $$\frac{(k^2 - \kappa^2)^2}{4k^2\kappa^2} + 1 = \frac{k^2}{4\kappa^2} + \frac{\kappa^2}{4k^2} + \frac{1}{2}$$ (38) Using the expression for k and κ from (2) and (6) respectively, we can write (38) as: $$\frac{(k^2 - \kappa^2)^2}{4k^2\kappa^2} + 1 = \frac{V_0^2}{4E(V_0 - E)}$$ (39) Substituting (39) in (37) and letting $\eta = \frac{E}{V_0}$, we can write: $$T = \left[1 + \frac{\sinh^2(\kappa a)}{4\eta(1-\eta)}\right]^{-1}, \qquad \eta \in (0,1)$$ (40) The particle could either be transmitted through the barrier or be reflected from the barrier. Hence we must have: $$T + R = 1 \qquad \Rightarrow \qquad R = T - 1 \tag{41}$$ Using expression for κ from (6) and the notation of η , we can rewrite κ as: $$\kappa = \frac{\sqrt{2mV_0(1-\eta)}}{\hbar} \tag{42}$$ # 2.2 Case II: $E = V_0$ In this case the solution in Region I and Region III will remain same as given by (3) and (5) respectively, i.e, Region I: $$\psi_1(x) = Ae^{ikx} + Be^{-ikx}, \qquad k = \frac{\sqrt{2mE}}{\hbar}$$ (43) Region III: $$\psi_3(x) = Ce^{ikx}, \qquad k = \frac{\sqrt{2mE}}{\hbar}$$ (44) In Region II, (1) reduces to the following equation: $$\frac{d^2}{dx^2}\psi_2(x) = 0\tag{45}$$ The solution to (45) is linear and is given by: $$\psi_2(x) = P + Qx \tag{46}$$ Using continuity of $\psi(x)$ at x=0 and at x=a, we have: $$\psi_1(0) = \psi_2(0) \quad \text{and} \quad \psi_2(a) = \psi_3(a)$$ $$\Rightarrow A + B = P \quad \text{and} \quad P + Qa = Ce^{ika}$$ (47) $$\Rightarrow A + B = P$$ and $P + Qa = Ce^{ika}$ (48) Using continuity of $\frac{d}{dx}\psi(x)$ at x=0 and at x=a, we have: $$\frac{d}{dx}\psi_1(x)\Big|_{x=0} = \frac{d}{dx}\psi_2(x)\Big|_{x=0} \quad \text{and} \quad \frac{d}{dx}\psi_2(x)\Big|_{x=a} = \frac{d}{dx}\psi_3(x)\Big|_{x=a}$$ $$\Rightarrow ikA - ikB = Q \quad \text{and} \quad Q = ikCe^{ika}$$ (50) $$\Rightarrow ikA - ikB = Q \quad \text{and} \quad Q = ikCe^{ika}$$ (50) Since we have five constants A, B, C, P, Q and only four equations given by (48) and (50), the system is underdetermined. #### 2.2.1 Finding Transmission and Reflection coefficients Note that (12),(13), (14), (15), (16), (17) and (18) still holds in this case. Now for notational simplicity, let $\frac{B}{A} = r$, $\frac{P}{A} = p$, $\frac{Q}{A} = q$ and $\frac{C}{A} = t$. We have already found the four sets of equations given by (48) and (50) using boundary conditions and continuity of wavefunction and its first derivative. On dividing each of these four equations by A and using the notations as mentioned above, we get: $$1 + r = p \tag{51}$$ $$ik - ikr = q (52)$$ $$p + qa = te^{ika} (53)$$ $$q = ikte^{ika} (54)$$ Multiplying (54) by a and subtracting it from (53), we get: $$p = (1 - ika)te^{ika} (55)$$ Multiplying (51) by ik and adding it to (52), we get: $$2ik = pik + q \tag{56}$$ Using (54) and (55) in (56), we get: $$2ik = (2 - ika)ikte^{ika} (57)$$ Solving (57) for t, we get: $$t = \frac{2e^{-ika}}{2 - ika} \tag{58}$$ The complex conjugate of t can be written as: $$t^* = \frac{2e^{ika}}{2 + ika} \tag{59}$$ Using (18), we have: $$T = t^*t = \frac{2e^{ika}}{2 + ika} \times \frac{2e^{-ika}}{2 - ika} = \frac{4}{4 + k^2a^2}$$ (60) $$\Rightarrow \boxed{T = \left[1 + \left(\frac{ka}{2}\right)^2\right]^{-1}}, \qquad k = \frac{\sqrt{2mE}}{\hbar} = \frac{\sqrt{2mV_0}}{\hbar} \tag{61}$$ Note that $\eta = \frac{E}{V_0} = 1$ in this case. The particle could either be transmitted through the barrier or be reflected from the barrier. Hence we must have: $$T + R = 1 \qquad \Rightarrow \qquad R = T - 1 \tag{62}$$ #### $2.3 \ Case \ III: \ E > V_0$ In this case the solution in Region I and Region III will remain same as given by (3) and (5) respectively, i.e, Region I: $$\psi_1(x) = Ae^{ikx} + Be^{-ikx}, \qquad k = \frac{\sqrt{2mE}}{\hbar}$$ (63) Region III: $$\psi_3(x) = Ce^{ikx}, \qquad k = \frac{\sqrt{2mE}}{\hbar}$$ (64) In Region II, (1) reduces to the following equation: $$\frac{d^2}{dx^2}\psi_2(x) = -\alpha^2\psi_2(x), \quad \text{where } \alpha = \frac{\sqrt{2m(E - V_0)}}{\hbar}$$ (65) The solution to (65) is oscillatory and is given by: $$\psi_2(x) = Me^{i\alpha x} + Ne^{-i\alpha x} \tag{66}$$ Using continuity of $\psi(x)$ at x=0 and at x=a, we have: $$\psi_1(0) = \psi_2(0) \quad \text{and} \quad \psi_2(a) = \psi_3(a)$$ (67) $$\psi_1(0) = \psi_2(0) \quad \text{and} \quad \psi_2(a) = \psi_3(a)$$ $$\Rightarrow A + B = M + N \quad \text{and} \quad Me^{i\alpha a} + Ne^{-i\alpha a} = Ce^{ika}$$ (68) Using continuity of $\frac{d}{dx}\psi(x)$ at x=0 and at x=a, we have: $$\frac{d}{dx}\psi_1(x)\Big|_{x=0} = \frac{d}{dx}\psi_2(x)\Big|_{x=0} \quad \text{and} \quad \frac{d}{dx}\psi_2(x)\Big|_{x=a} = \frac{d}{dx}\psi_3(x)\Big|_{x=a}$$ $$\Rightarrow kA - kB = \alpha M - \alpha N \quad \text{and} \quad \alpha M e^{i\alpha a} - \alpha G e^{-i\alpha a} = kC e^{ika}$$ (69) $$\Rightarrow kA - kB = \alpha M - \alpha N \qquad \text{and} \qquad \alpha M e^{i\alpha a} - \alpha G e^{-i\alpha a} = kC e^{ika} \tag{70}$$ Since we have five constants A, B, C, M, N and only four equations given by (68) and (70), the system is underdetermined. #### 2.3.1 Finding Transmission and Reflection coefficients Note that (12),(13), (14), (15), (16), (17) and (18) still holds in this case. Now for notational simplicity, let $\frac{B}{A} = r$, $\frac{M}{A} = m$, $\frac{N}{A} = n$ and $\frac{C}{A} = t$. We have already found the four sets of equations given by (68) and (70) using boundary conditions and continuity of wavefunction and its first derivative. On dividing each of these four equations by A and using the notations as mentioned above, we get: $$1 + r = m + n \tag{71}$$ $$k - kr = \alpha m - \alpha n \tag{72}$$ $$me^{i\alpha a} + ne^{-i\alpha a} = te^{ika} \tag{73}$$ $$\alpha m e^{i\alpha a} - \alpha n e^{-i\alpha a} = kt e^{ika} \tag{74}$$ Multiplying (73) by $i\alpha$ and adding it to (74), we get: $$2\alpha m e^{i\alpha a} = kte^{ika} + \alpha te^{ika} \tag{75}$$ Dividing (75) by $2\alpha e^{i\alpha a}$ and then simplifying, we get: $$m = \frac{te^{(ik-i\alpha)a}(k+\alpha)}{2\alpha} \tag{76}$$ Multiplying (73) by α and then subtracting it from (74), we get: $$-2\alpha ne^{-i\alpha a} = kte^{ika} - \alpha te^{ika} \tag{77}$$ Dividing (77) by $-2\alpha e^{-i\alpha a}$ and then simplifying, we get: $$n = \frac{te^{(ik+i\alpha)a}(k-\alpha)}{-2\alpha} \tag{78}$$ Multiplying (71) by k and then adding it to (72) we get: $$2k = (k+\alpha)m + (k-\alpha)n\tag{79}$$ Using (76), (78) in (79) and then simplifying, we get: $$2k = \left[e^{-i\alpha a}(k+\alpha)^2 - e^{i\alpha a}(k-\alpha)^2\right] \frac{te^{ika}}{2\alpha}$$ (80) Simplifying (80) further, we get: $$2k = \left[(k^2 + \alpha^2)(e^{-i\alpha a} - e^{i\alpha a}) + (2k\alpha)(e^{-i\alpha a} + e^{i\alpha a}) \right] \frac{te^{ika}}{2\alpha}$$ (81) The hyperbolic sinh(x) and cosh(x) are given as: $$\sinh(x) = \frac{e^x - e^{-x}}{2}$$ and $\cosh(x) = \frac{e^x + e^{-x}}{2}$ (82) Using (82), we can write (81) as: $$2k = \left[-(-k^2 + \alpha^2) 2\sinh(i\alpha a) + (2k\alpha) 2\cosh(i\alpha a) \right] \frac{te^{ika}}{2\alpha}$$ (83) But $\sinh(ix) = i\sin(x)$ and $\cosh(ix) = \cos(x)$. Therefore we have from (83): $$2k = \left[-i(-k^2 + \alpha^2)2\sin(\alpha a) + (2k\alpha)2\cos(\alpha a)\right] \frac{te^{ika}}{2\alpha}$$ (84) Solving (84) for t, we get: $$t = \frac{4k\alpha e^{-ika}}{-i(k^2 + \alpha^2)2\sin(\alpha a) + (2k\alpha)2\cos(\alpha a)}$$ (85) The complex conjugate of t can be written as: $$t^* = \frac{4k\alpha e^{ika}}{i(k^2 + \alpha^2)2\sin(\kappa a) + (2k\alpha)2\cos(\kappa a)}$$ (86) Using (18), we have: $$T = t^*t = \frac{4k\alpha e^{ika}}{i(k^2 + \alpha^2)2\sin(\kappa a) + (2k\alpha)2\cos(\kappa a)} \times \frac{4k\alpha e^{-ika}}{-i(k^2 + \alpha^2)2\sin(\alpha a) + (2k\alpha)2\cos(\alpha a)}$$ (87) $$\Rightarrow T = \frac{16k^2\alpha^2}{4(k^2 + \alpha^2)^2 \sin^2(\alpha a) + 16k^2\alpha^2 \cos^2(\alpha a)}$$ (88) $$\Rightarrow T = \frac{1}{\frac{(k^2 + \alpha^2)^2}{4k^2\alpha^2} \sin^2(\alpha a) + \cos^2(\alpha a)}$$ (89) Using the identity $\cos^2(x) + \sin^2(x) = 1$ in (89), it can be written as: $$T = \frac{1}{1 + \left[\frac{(k^2 + \alpha^2)^2}{4k^2\alpha^2} - 1\right]\sin^2(\alpha a)}$$ (90) Now we will first simplify the denominator of (90) as follows: $$\frac{(k^2 + \alpha^2)^2}{4k^2\alpha^2} - 1 = \frac{k^2}{4\alpha^2} + \frac{\alpha^2}{4k^2} - \frac{1}{2}$$ (91) Using the expression for k and α from (64) and (65) respectively, we can write (91) as: $$\frac{(k^2 + \alpha^2)^2}{4k^2\alpha^2} - 1 = \frac{V_0^2}{4E(E - V_0)}$$ (92) Substituting (92) in (90) and letting $\eta = \frac{E}{V_0}$, we can write: $$T = \left[1 + \frac{\sin^2(\alpha a)}{4\eta(\eta - 1)}\right]^{-1}, \qquad \eta \in (1, \infty)$$ (93) The particle could either be transmitted through the barrier or be reflected from the barrier. Hence we must have: $$T + R = 1 \qquad \Rightarrow \qquad R = T - 1 \tag{94}$$ Using expression for α from (65) and the notation of η , we can rewrite α as: $$\alpha = \frac{\sqrt{2mV_0(\eta - 1)}}{\hbar} \tag{95}$$ # 3. Continuity of Transmission coefficient function $T(\eta)$ and Reflection coefficient function $R(\eta)$ Since we have already found the Transmission and Reflection coefficients, we will now inspect their continuity. Let us define $T:(0,\infty)\to [0,1]$ by $$T(\eta) = \begin{cases} \left[1 + \frac{\sinh^2(\kappa a)}{4\eta(1 - \eta)}\right]^{-1}, & \kappa = \frac{\sqrt{2mV_0(1 - \eta)}}{\hbar} & \forall \quad \eta \in (0, 1) \end{cases}$$ $$\left[1 + \left(\frac{ka}{2}\right)^2\right]^{-1}, & k = \frac{\sqrt{2mV_0}}{\hbar} & \text{if} \quad \eta = 1 \end{cases}$$ $$\left[1 + \frac{\sin^2(\alpha a)}{4\eta(\eta - 1)}\right]^{-1}, & \alpha = \frac{\sqrt{2mV_0(\eta - 1)}}{\hbar} & \forall \quad \eta \in (1, \infty)$$ We note that 1, $\sinh^2(\kappa a)$ and $4\eta(1-\eta)$ are positive smooth functions when $\eta \in (0,1)$. Also note that 1 and $4\eta(\eta-1)$ are positive smooth functions and $\sin^2(\alpha a)$ is non-negative smooth function when $\eta \in (1,\infty)$. Hence $T(\eta)$ is continuous when $\eta \in (0,1) \cup (1,\infty)$. Now we will inspect the continuity of $T(\eta)$ at $\eta = 1$. Note that $\frac{d}{d\eta}\kappa = \frac{-mV_0}{\hbar\sqrt{2mV_0(1-\eta)}}$ and $2\sinh(\kappa a)\cosh(\kappa a) = \sinh(2\kappa a)$. The limit of $T(\eta)$ as $\eta \to 1^-$ is given as: $$\lim_{\eta \to 1^{-}} T(\eta) = \frac{1}{1 + \lim_{\eta \to 1^{-}} \frac{\sinh^{2}(\kappa a)}{4\eta(1 - \eta)}}$$ (96) Since the limit in (96) gives an indeterminate form $(\frac{0}{0})$, we have using L'Hôpital's Rule: $$\lim_{\eta \to 1^{-}} \frac{\sinh^{2}(\kappa a)}{4\eta(1-\eta)} = \lim_{\eta \to 1^{-}} \frac{2a\sinh(\kappa a)\cosh(\kappa a)\frac{d}{d\eta}\kappa}{4-8\eta} = \frac{mV_{0}a}{4\hbar} \lim_{\eta \to 1^{-}} \frac{\sinh(2\kappa a)}{\sqrt{2mV_{0}(1-\eta)}}$$ (97) The limit in (97) again gives an indeterminate form $(\frac{0}{0})$. Using L'Hôpital's Rule again gives: $$\lim_{\eta \to 1^{-}} \frac{\sinh^{2}(\kappa a)}{4\eta(1-\eta)} = -\frac{mV_{0}a}{4\hbar} \cdot \frac{4a}{2mV_{0}} \lim_{\eta \to 1^{-}} \cosh(2\kappa a) \sqrt{2mV_{0}(1-\eta)} \frac{d}{d\eta} \kappa \tag{98}$$ $$\Rightarrow \lim_{\eta \to 1^{-}} \frac{\sinh^{2}(\kappa a)}{4\eta(1-\eta)} = \frac{mV_{0}a^{2}}{2\hbar^{2}} \lim_{\eta \to 1^{-}} \cosh(2\kappa a)$$ (99) Since $\kappa \to 0$ as $\eta \to 1^- \Rightarrow \cosh(2\kappa a) \to 1$ as $\eta \to 1^-$. Therefore we have from (99): $$\lim_{\eta \to 1^{-}} \frac{\sinh^{2}(\kappa a)}{4\eta(1-\eta)} = \frac{mV_{0}a^{2}}{2\hbar^{2}}$$ (100) Using (100) in (96), we have: $$\lim_{\eta \to 1^{-}} T(\eta) = \left[1 + \frac{mV_0 a^2}{2\hbar^2} \right]^{-1}$$ (101) Now note that $\frac{d}{d\eta}\alpha = \frac{mV_0}{\hbar\sqrt{2mV_0(\eta-1)}}$ and $2\sin(\alpha a)\cosh(\alpha a) = \sin(2\alpha a)$. The limit of $T(\eta)$ as $\eta \to 1^+$ is given as: $$\lim_{\eta \to 1^{+}} T(\eta) = \frac{1}{1 + \lim_{\eta \to 1^{+}} \frac{\sin^{2}(\alpha a)}{4\eta(\eta - 1)}}$$ (102) Since the limit in (102) gives an indeterminate form $(\frac{0}{0})$, we have using L'Hôpital's Rule: $$\lim_{\eta \to 1^{+}} \frac{\sin^{2}(\alpha a)}{4\eta(\eta - 1)} = \lim_{\eta \to 1^{+}} \frac{2a\sin(\alpha a)\cos(\alpha a)\frac{d}{d\eta}\alpha}{8\eta - 4} = \frac{mV_{0}a}{4\hbar} \lim_{\eta \to 1^{+}} \frac{\sin(2\alpha a)}{\sqrt{2mV_{0}(\eta - 1)}}$$ (103) The limit in (103) again gives an indeterminate form $(\frac{0}{0})$. Using L'Hôpital's Rule again gives: $$\lim_{\eta \to 1^{+}} \frac{\sin^{2}(\alpha a)}{4\eta(\eta - 1)} = \frac{mV_{0}a}{4\hbar} \cdot \frac{4a}{2mV_{0}} \lim_{\eta \to 1^{+}} \cos(2\alpha a) \sqrt{2mV_{0}(\eta - 1)} \frac{d}{d\eta} \alpha \tag{104}$$ $$\Rightarrow \lim_{\eta \to 1^+} \frac{\sin^2(\alpha a)}{4\eta(\eta - 1)} = \frac{mV_0 a^2}{2\hbar^2} \lim_{\eta \to 1^+} \cos(2\alpha a)$$ (105) Since $\alpha \to 0$ as $\eta \to 1^+ \Rightarrow \cos(2\alpha a) \to 1$ as $\eta \to 1^+$. Therefore we have from (105): $$\lim_{\eta \to 1^+} \frac{\sin^2(\alpha a)}{4\eta(\eta - 1)} = \frac{mV_0 a^2}{2\hbar^2}$$ (106) Using (106) in (102), we have: $$\lim_{\eta \to 1^{+}} T(\eta) = \left[1 + \frac{mV_0 a^2}{2\hbar^2} \right]^{-1}$$ (107) At $\eta = 1$, we have: $$T(1) = \left[1 + \left(\frac{ka}{2}\right)^2\right]^{-1} = \left[1 + \frac{mV_0a^2}{2\hbar^2}\right]^{-1}$$ (108) From (101), (107) and (108), we have: $$\lim_{\eta \to 1^{-}} T(\eta) = \lim_{\eta \to 1^{+}} T(\eta) = T(1) = \left[1 + \frac{mV_0 a^2}{2\hbar^2} \right]^{-1}$$ (109) Hence $T(\eta)$ is also continuous at $\eta = 1$. Therefore $T(\eta)$ is continuous on $(0, \infty)$. Now define $R:(0,\infty)\to[0,1]$ by $$R(\eta) = 1 - T(\eta) \qquad \forall \quad \eta \in (0, \infty) \tag{110}$$ Since both 1 and $T(\eta)$ are continuous on $(0,\infty) \Rightarrow R(\eta)$ is continuous on $(0,\infty)$. # 4. Plotting Transmission and Reflection coefficients vs η using Python Let us consider an electron moving along positive x direction in Region I. It will encounter a potential barrier of height 1 eV and of width 1 nm. Let us plot the values of Transmission and Reflection coefficients vs η . We will use the expressions for T, R, κ , k and α as determined in this paper. ## 4.1 Python Code ``` import numpy as np import matplotlib.pyplot as plt # Constants m = 9.11 * 10**(-31) # mass of electron (kg) hbar = 1.055 * 10**(-34) # reduced Planck's constant (Js) V0 = 1 * 1.6 * 10**(-19) # barrier height in Joules (1 eV) a = 10**(-9) # barrier width (m) # Tunneling region : eta <= 1</pre> eta_tunnel = np.linspace(0,1,500)[1:-1] # exclude 0 and 1 kappa = np.sqrt(2 * m * VO * (1 - eta_tunnel))/hbar sinh_term = np.sinh(kappa * a)**2 T_{\text{kappa}} = 1/(1+(\sinh_{\text{term}}/(4 * \text{eta_tunnel} * (1 - \text{eta_tunnel})))) R_{kappa} = 1 - T_{kappa} \# E=VO : eta=1 eta=np.array([1]) k=np.sqrt(2 * m * V0)/hbar T=np.array([1/(1+((k * a)/2)**2)]) R=1-T # Over-barrier region : eta > 1 eta_above = np.linspace (1,7,3000)[1:] # exclude 1 alpha = np.sqrt(2 * m * V0 * (eta_above-1))/hbar sin_term = np.sin(alpha * a)**2 T_{alpha} = 1/(1 + (\sin_t erm/(4 * eta_above * (eta_above - 1)))) R_alpha = 1 - T_alpha # Plotting plt.plot(eta_tunnel , T_kappa , color = 'red', label = r'Transmission Coefficient T') plt.plot(eta_tunnel , R_kappa , color ='blue', label =r'Reflection Coefficient R') plt.plot(eta,T,'r,') plt.plot(eta,R,'b,') plt.plot(eta_above , T_alpha , color = 'red') plt.plot(eta_above , R_alpha , color = 'blue') plt.title('Quantum Tunneling') plt.xlabel(r'\$\eta = \dfrac{E}{V_0}$') plt.ylabel ('Coefficient Value') plt.legend() plt.grid() plt.ylim(-0.05, 1.05) plt.xlim(0,7) plt.show() ``` #### 4.2 Plot Figure 1: Plot of transmission coefficient $T(\eta)$ and reflection coefficient $R(\eta)$ as functions of the dimensionless energy parameter $\eta = E/V_0$. The plot illustrates continuity at $\eta = 1$ and the transition from tunneling to oscillatory behavior. #### 4.3 Inference from the Plot The graph depicting the transmission coefficient $T(\eta)$ and reflection coefficient $R(\eta)$ as functions of the dimensionless parameter $\eta = \frac{E}{V_0}$ reveals the nuanced behavior of quantum particles interacting with a potential barrier. For $\eta < 1$, we observe that $T(\eta)$ remains strictly non-zero as $\eta \to 1^-$, indicating that particles with energy less than the barrier height still possess a finite probability of tunneling through the barrier. This behavior arises from the continuity of the wavefunction and its derivative across the potential barrier. As $\eta \to 0$, $T(\eta) \to 0$, and $R(\eta) \to 1$, which agrees with intuitive expectations of nearly total reflection at very low energies. At $\eta=1$, a critical threshold, the function $T(\eta)$ is shown to be continuous, as confirmed by analytical limits using L'Hôpital's Rule. This reflects the smooth transition between classically forbidden and allowed energy regimes in quantum mechanics. For $\eta > 1$, the particle energy exceeds the potential of the barrier. In this regime, $T(\eta)$ exhibits oscillatory behavior due to constructive and destructive interference between forward and backward traveling waves. As $\eta \to \infty$, $T(\eta) \to 1$ and $R(\eta) \to 0$, aligning with the classical limit of full transmission at high energies. # 5. Comparison with Classical Mechanics For $E < V_0$ ($\eta < 1$), classical mechanics predicts total reflection, as the particle cannot overcome the potential barrier, implying T=0 and R=1. However, in quantum mechanics, the wave-like nature of particles allows for non-zero penetration into the classically forbidden region, governed by the exponential solution to the Schrödinger equation in the barrier region (Region II). The continuity of the wavefunction and its derivative enforces boundary conditions that yield a non-zero transmission probability, a distinctly quantum phenomenon known as tunneling. At $E = V_0$ ($\eta = 1$), classical mechanics predicts total reflection, since the particle has zero kinetic energy at the barrier and cannot proceed. In quantum mechanics, however, the continuity of the wavefunction and its derivative still allows for a non-zero transmission probability. Although the wavefunction is linear in the barrier region (Region II) at this energy, the boundary conditions ensure that partial transmission occurs even at this critical point. For $E > V_0$ ($\eta > 1$), classical mechanics predicts total transmission. Quantum mechanics, in contrast, introduces partial reflection due to abrupt changes in the potential in a region. The wavefunction in the barrier region (Region II) undergoes interference due to its complex exponential form, resulting in oscillatory behavior of both T and R. These oscillations encode the resonant and anti-resonant conditions determined by the phase relation between waves, a concept entirely absent in classical particle dynamics. Thus, the quantum description not only accommodates classically forbidden phenomena (tunneling), but also provides richer structure in classically allowed regimes, revealing the fundamentally wave-like nature of microscopic systems. #### References - [1] D. J. Griffiths, Introduction to Quantum Mechanics, 3rd ed. (Pearson Education, 2005). - [2] R. Shankar, Principles of Quantum Mechanics, 2nd ed. (Springer, 2008).